等離子球磨技術(shù)可大規(guī)模制造高性能β-MnO2@C陰極材料,處理10h后,膨脹石墨中包覆有多孔雜化微粒MnO2納米微晶,顆粒之間的孔促進(jìn)了連續(xù)循環(huán)過(guò)程中的電解質(zhì)滲透,碳的結(jié)合極大地提高了雜化體的電導(dǎo)率并有助于減輕MnO2的溶解。在Zn(CF3SO3)2電解質(zhì)水溶液中400循環(huán)保持130 mAh·g 1的高容量,是迄今為止相關(guān)報(bào)道中最高的。等離子體輔助制備β-MnO2@C陰極材料簡(jiǎn)便易行,具有大規(guī)模應(yīng)用的潛力
一、材料處理
可膨脹石墨900℃下高溫馬弗爐處理2min獲得膨脹石墨,質(zhì)量比為9:1的β-MnO2和膨脹石墨在氬氣氣氛下等離子球磨10h,球料比為50:1,每2h停15min,命名為β-MnO2@C(9-1),對(duì)比實(shí)驗(yàn)制備質(zhì)量比為8:2,7:5,5:5的β-MnO2@C和球磨5h的β-MnO2@C。圖1為經(jīng)過(guò)等離子球磨處理制備β-MnO2@C復(fù)合材料的過(guò)程。通過(guò)放電等離子體能量和機(jī)械能同步處理MnO2和膨脹石墨的混合物將大顆粒MnO2顆粒細(xì)化為包裹有碳的微納米顆粒。
二、形態(tài)結(jié)構(gòu)分析
圖2 (a)XRD譜圖(b)等離子處理10小時(shí)后的β-MnO2@C和未處理膨脹石墨的拉曼光譜(c)和(d)研磨后的β-MnO2@C(9-1)雜化粉末在不同分辨率下的SEM圖像
圖2(a)等離子球磨10h后XRD譜圖中可以清晰的看到β-MnO2的衍射峰,但膨脹石墨的峰并不明顯,結(jié)合圖b中的Raman分析膨脹石墨在處理過(guò)程中轉(zhuǎn)變?yōu)闊o(wú)定型的碳。圖2(c)顯示復(fù)合材料為5-10μm類(lèi)球形粉體,放大后材料表面有不規(guī)則聚集體,尺寸為100-500nm,復(fù)合材料中存在許多多尺寸孔徑。另外膨脹石墨和β-MnO2兩相混合均勻,結(jié)構(gòu)穩(wěn)定。
圖3(a)β-MnO2@C的TEM圖像(b)選定區(qū)域的電子衍射圖(c)Mn,O和C的元素映射以及(def)高分辨率TEM圖像
圖3(a)顯示MnO2顆粒被碳基包覆,表層碳膜厚度小于10nm,高倍投射電鏡下顯示出大小為5nm的超細(xì)MnO2晶粒,這些晶粒之間存在大量界面,可在電化學(xué)反應(yīng)過(guò)程中充當(dāng)電解質(zhì)的傳輸通道。
三、電化學(xué)性能
圖4 β-MnO2@C(9-1)在1.0至1.8V之間的電化學(xué)性能(a)初始三個(gè)循環(huán)的CV曲線,掃描速率為0.1 mV·s-1(b)以50mA·g-1的電流速率進(jìn)行第1、5、10、20、30、40和50次循環(huán)的恒電流電壓曲線(c)第1至第5,第10和第30周期的EIS測(cè)試,插圖顯示-Z’’與低頻區(qū)域中頻率的倒數(shù)平方根之間的關(guān)系(d)電流為200mA·g-1時(shí)的循環(huán)性能和庫(kù)侖效率(e)在100 mA·g-1至2 A·g-1的倍率性能
β-MnO2@C在250個(gè)循環(huán)后比容量達(dá)150mAh·g-1,300個(gè)循環(huán)后也可以維持100 mAh·g-1的穩(wěn)定容量,初始循環(huán)后庫(kù)倫效率接近100%,這歸因于MnO2超細(xì)晶粒尺寸和在無(wú)定型碳中的高分散性,有助于形成導(dǎo)電網(wǎng)絡(luò)并抑制MnO2的溶解。等離子球磨后β-MnO2@C對(duì)Zn2+的嵌入/脫嵌具有很強(qiáng)的耐受性,并且有良好的倍率性能和出色的循環(huán)性能。
圖5 (a)和(b)具有2M ZnSO4-0.1和0.2M MnSO4的β-MnO2@C(9-1)CV曲線(c)β-MnO2@C(9-1)與2M ZnSO4-0.1M MnSO4、2M ZnSO4-0.2M MnSO4和3M Zn(CF3SO3)2-0.1M MnSO4的循環(huán)性能(d)在最近的研究中,與不同的錳氧化物陰極相比,等離子球磨的β-MnO2@C(9-1)的容量保持率
電解質(zhì)的種類(lèi)會(huì)對(duì)β-MnO2@C(9-1)的穩(wěn)定性產(chǎn)生一定的影響,但不會(huì)改變其反應(yīng)機(jī)理。對(duì)比不同MnO2陰極材料容量保持率,等離子球磨處理的β-MnO2@C(9-1)在400個(gè)循環(huán)后仍具有優(yōu)異的循環(huán)穩(wěn)定性,證明等離子球磨技術(shù)在改善水性Zn2+電池陰極材料方面具有可行性。
四、機(jī)械性能
圖6(a)β-MnO2@C(9-1)電極在第二次循環(huán)中使用3M Zn(CF3SO3)2和0.1M MnSO4水性電解質(zhì)進(jìn)行充電和放電后XRD圖譜(b)第β-MnO2@C(9-1)電極在第2、10、50和200次充電至1.8V后的XRD圖(c)第2和200周期的XPS表征(d)分別在第2次,第50次和第200次充電至1.8V或放電至1.0V之后,β-MnO2@C(9-1)電極的Mn L邊緣的軟XAS(e)示意圖顯示了使用3M Zn(CF3SO3)2-0.1M MnSO4水溶液的β-MnO2/Zn電池放電過(guò)程中的反應(yīng)
等離子球磨處理的β-MnO2@C的多孔結(jié)構(gòu)和電解質(zhì)的協(xié)同作用。一定數(shù)量的Zn2+進(jìn)入MnO2小顆粒的隧道結(jié)構(gòu)中,并在孔中形成Zn4SO4(OH)6·4H2O沉淀,從而緩解大量Zn2+插入的應(yīng)力,從而保護(hù)β-MnO2的結(jié)構(gòu)完整性。同時(shí),借助于碳基體薄層和Zn(CF3SO3)2的電解質(zhì),減輕了Mn2+的溶解,因此,MnO2@C/Zn電池可實(shí)現(xiàn)穩(wěn)定的電化學(xué)性能。這也是通過(guò)在陰極材料中構(gòu)建足夠的空間來(lái)容納可逆Zn4SO4(OH)6·4H2O來(lái)延長(zhǎng)Zn離子電池循環(huán)壽命的創(chuàng)新策略。
五、結(jié)論
經(jīng)等離子球磨的β-MnO2@C陰極出色的循環(huán)穩(wěn)定性主要?dú)w因于具有納米級(jí)尺寸的多孔結(jié)構(gòu)與Zn(CF3SO3)2基電解質(zhì)的協(xié)同作用。3M Zn(CF3SO3)2-0.1M MnSO4的電解液抑制了Mn2+的溶解而具有優(yōu)異的穩(wěn)定性。這是延長(zhǎng)Zn離子電池循環(huán)壽命的創(chuàng)新策略。值得一提的是,等離子體輔助制備β-MnO2@C陰極材料簡(jiǎn)便易行,具有大規(guī)模應(yīng)用的潛力,可為Zn-MnO2水性離子電池的應(yīng)用鋪平道路。
六、以上成果來(lái)自于
Jiang W , Xu X , Liu Y , et al. Facile plasma treated β-MnO2@C hybrids for durable cycling cathodes in aqueous Zn-ion batteries[J]. Journal of Alloys and Compounds, 2020, 827:154273.
電話
微信掃一掃